Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model

نویسنده

  • Peter C. Young
چکیده

For many years, various methods for the identification and estimation of parameters in linear, discrete-time transfer functions have been available and implemented in widely available Toolboxes for Matlab. This paper considers a unified Refined Instrumental Variable (RIV) approach to the estimation of discrete and continuous-time transfer functions characterized by a unified operator that can be interpreted in terms of backward shift, derivative or delta operators. The estimation is based on the formulation of a pseudo-linear regression relationship involving optimal prefilters that is derived from an appropriately unified Box-Jenkins transfer function model. The paper shows that, contrary to apparently widely held beliefs, the iterative RIV algorithm provides a reliable solution to the maximum likelihood optimization equations for this class of Box-Jenkins transfer function models and so its en bloc or recursive parameter estimates are optimal in maximum likelihood, prediction error minimization and instrumental variable terms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A refined IV method for closed-loop system identification

This paper describes an optimal instrumental variable method for identifying discrete-time transfer function models of the Box-Jenkins transfer function form in the closed-loop situation. This method is based on the Refined Instrumental Variable (RIV) algorithm which, because of an appropriate choice of particular design variables, achieves minimum variance estimation of the model parameters. T...

متن کامل

Refined Instrumental Variable Identification of Continuous-Time OE and BJ Models from Irregularly Sampled Data

This paper looks at the problem of system identification from non-uniformly sampled input-output data. It describes how refined instrumental variable estimators can be derived to directly identify the parameters of continuous-time output error and Box-Jenkins transfer function models from irregularly sampled data. Monte Carlo simulation analysis is used to illustrate the properties of the propo...

متن کامل

Refined instrumental variable methods for identification of LPV Box-Jenkins models

Identification of linear parameter-varying systems in an input-output setting is investigated, focusing on the case when the noise part of the data generating system is an additive colored noise. In the Box-Jenkins and output-error cases, it is shown that the currently available linear regression and instrumental variable methods from the literature are far from being optimal in terms of bias a...

متن کامل

Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...

متن کامل

Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series

The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2015